

The BabySeq Project: Sequencing Healthy Newborns and the Path to Preventive Genomics

Robert C. Green, MD, MPH

Professor of Medicine (Genetics)

Brigham Health, Broad Institute, Harvard Medical School

"...whether you like it or not, a complete sequencing of newborns is not far away" Francis Collins, 2012

🗒 Mass General Brigham

Support and Disclosures

Research: National Institutes of Health NHGRI, NIA, NICHD, NHLBI, NCATS Department of Defense Broad Institute of MIT & Harvard Snite Foundation Franca Sozzani Fund for Preventive Genomics

Advisory: AIA, Grail, SavvySherpa, Verily

Co-Founder: Genome Medical

What is the evidence required to implement genomics in day-to-day medical care?

BabySeq

REVEAL

MedSeq

AllofUs Research Program

MGB Biobank / eMERGE III/IV

MilSeqVerily Project Baseline

PeopleSeq PopSeq

BabySeq Project team

Pankaj Agrawal Alan Beggs Ozge Ceyhan-Birsoy Kurt Christensen Lisa Diller Dmitry Dukhovny Romy Fawaz Leslie Frankel Casie Genetti **Robert Green** Amanda Gutierrez Maegan Harden Ingrid Holm

Joel Krier

Matthew Lebo Harvey Levy Xingquan Lu Kalotina Machini Zoe Mackay Amy McGuire Jaclyn Murry Medha Naik Tiffany Nguyen **Richard Parad** Hayley Peoples **Stacey Pereira Devan Petersen** Uma Ramamurthy

Vivek Ramanathan Heidi Rehm Amy Roberts **Jill Robinson** Serguei Roumiantsev Hadley Smith Talia Schwartz Tina Truong Melissa Uveges Susan Waisbren Timothy Yu **Bethany Zettler** Emilie Zoltick

The BabySeq Project: A controlled trial of WES and comprehensive interpretation

Infant, Parent, and Physician Outcomes

Newborn Genomic Sequencing Report

~1000 genes analyzed based on disease validity, penetrance, and age of onset:

Variants reported based on evidence for harm:

Curation of BabySeq gene list

Gene-disease validity (*n*=1,514) (0.1%)243 246 (16.1%)Definitive (16.2%) Strong Moderate Limited 505 Conflicting (33.4%) **Genes with strong and definitive evidence** (*n*=1,023) Age of onset Penetrance 11 (5.9%) (3.2%) 60 (1.1%) <2 years High 2-10 years Moderate 10-18 years Low >18 years 831 (81.2%) Genes with highly penetrant, childhood onset disease (i.e. Duchenne muscular dystrophy, n=884)

Genes with high actionability (i.e. cancer predisposition syndromes, n=70)

954 genes meet BabySeq reporting criteria

300

(31.4%)

 $(2.5\%)^{\circ 1}$ $(0.3\%)^{\circ 1}$ $(0.3\%)^{\circ 1}$

566

(59.3%)

Autosomal dominant

Autosomal recessive

Inheritance pattern of genes meeting BabySeq reporting criteria (954)

© 2020 Genomes2People

Ceyhan-Birsoy et al. Genetics in Medicine, 2017.

Demographics of Enrolled Parents in BabySeq

Genetti et al. Genetics in Medicine, 2019.

Reasons parents declined participation

Genetti et al. Genetics in Medicine, 2019.

The BabySeq Project: Unanticipated monogenic findings

Gene	Condition	Phenotypic evidence
ANKRD11	KBG syndrome; AD	Yes
BTD	Biotinidase deficiency; AR	Yes
ELN	Supravalvular aortic stenosis; AD	Yes
GLMN	Glomuvenous malformations; AD	Yes
KCNQ4	Non-syndromic hearing loss; AD	Family history
SLC7A9	Cystinuria; AR	Family history
TTN (4)	Dilated cardiomyopathy; AD	Family history (2/4)
BRCA2 (2)	Hereditary breast and ovarian cancer; AD	Family history
MSH2	Lynch syndrome; AD	Family history
МҮВРСЗ	Hypertrophic cardiomyopathy; AD	No
VCL	Dilated cardiomyopathy; AD	No
CD46	Atypical hemolytic-uremic syndrome; AD	No
CYP21A	Congenital adrenal hyperplasia due to 21- hydroxylase deficiency; <i>AR</i>	No
G6PD	Glucose-6-phosphate dehydrogenase deficiency; XL	No

Ceyhan-Birsoy et al. Am J Hum Genet, 2019.

88% of infants had at least 1 PV/LPV for a recessive carrier condition: Comparison with conventional carrier screening

566 recessive genes reported in BabySeq

301 genes included on largest commercial screening panels **47%** of reported variants would have been missed by commercial "expanded screening" panels

sema4

Counsyl

HerediT

99% of reported variants would have been missed by routine care

2 genes tested in standard prenatal care

VanNoy et al. Pediatrics, 2018.

The BabySeq Project: Comparison with conventional NBS

(n=159)	Sequencing positive	NBS positive
True positive	 Phenotype positive: 4 KBG syndrome Biotinidase deficiency* Supravalvular aortic stenosis Glomuvenous malformations Family history supported: 7 Non-syndromic hearing loss Cystinuria Dilated cardiomyopathy (2) Hereditary breast and ovarian cancer (2) Lynch syndrome 	 Phenotype positive: 3 Biotinidase deficiency* (Hemoglobin FAV) (Hemoglobin FAB)
False positive	 No phenotype or family history: 7 Hypertrophic cardiomyopathy Dilated cardiomyopathy (3) Atypical hemolytic-uremic syndrome Congenital adrenal hyperplasia Glc-6-phosphate dehydrogenase deficiency 	 False positive: 9 (7 NICU) Thyroid abnormality (5) Amino acid abnormalities + thyroid abnormality + severe combined immunodeficiency Thyroid abnormalities + homocystinuria Phenylketonuria Amino acid abnormalities
Total	18/159 = 11.3%	12/159 = 7.5%

Wojcik et al. in submission.

© 2020 Genomes2People

Pereira et al. in submission.

The BabySeq Project: No disruption of parent-child bond or increased perception of child vulnerability

Pereira et al. in submission.

Assessing downstream medical impact of genomic sequencing

Figure 1. Number of healthcare services associated with followup of secondary findings from newborn genomic sequencing using different approaches.

*Parent surveys were omitted because they included no items to assess healthcare utilization other than specialist visits.

Health care spending in newborns after sequencing

Christensen et al., in preparation.

Modeling lifetime benefits and costs

(slide courtesy Kurt Christensen)

Comprehensive sequencing and analysis of many genes						
	MedSeq	BABYSEQ	MILSEO			
Monogenic (Strong effect)	21%	11%	15%			
Monogenic (Weak effect)			54%			
Polygenic (>2 OR)	62%					
Carrier Status	92%	88%	88%			
Pharmacogenomics (atypical)	80%	5% (limited to childhood	100%			
© 2020 Genomes2People	n et al. <i>Genetics in Medicine</i> , 2018; Vassy et al. An Ceyhan-Birsoy et al. Am J Human Genet	nals of Internal Medicine, 2017; tics, 2019.				

B Mass General Brigham

Thank You!

genomes2people.org

@robertcgreen
@genomes2people

@genomes2people

rcgreen@bwh.harvard.edu