Nomination and Prioritization Workgroup Report: Mucopolysaccharidosis II (Hunter Syndrome, MPS II) Advisory Committee on Heritable Disorders in Newborns and Children

Presented by: Scott Shone, PhD, HCLD(ABB) May 13, 2021

N&P WG: Jeffrey Brosco, Carla Cuthbert, Shawn McCandless, Cynthia Powell, Scott Shone

Nomination of Mucopolysaccharidosis II (Hunter Syndrome, MPS II)

Nominator

- Terri L. Klein, NPGC, President, National MPS Society
- N. Matthew Ellinwood, DVM, PhD, Chief Scientific Officer, National MPS Society

Co-Sponsors

- Barbara K. Burton, MD, Department of Pediatrics, Northwestern U
- Michael H. Gelb, PhD, Department of Chemistry, University of Washington
- Priya Kishnani, MD, Department of Pediatrics, Duke University
- Joseph Muenzer, MD, PhD, University of North Carolina at Chapel Hill
- C. Ronald Scott, MD, Departments of Pediatrics, University of Washington
- Bradford Therrell, PhD, Departments of Pediatrics, University of Texas

Mucopolysaccharidosis II (MPS II) Overview¹

- Lysosomal Storage Disorder
- Progressive, multi-organ disease
- Onset ranges from approx. 1 year of age to early adolescence
 - attenuated and severe phenotypes
 - significant somatic symptoms (both)
 - profound cognitive impairment and developmental regression (severe)
 - death in second decade of life
 - somatic symptoms without significant cognitive involvement (attenuated)
 - survival into adulthood with some premature mortality

Genetics and Epidemiology of Mucopolysaccharidosis II (MPS II)

- X-linked recessive inheritance, clinical heterogeneity with two primary phenotypes: attenuated and severe
- Deficiency of iduronate-2-sulfatase (I2S) leading to accumulation of dermatan sulfate and heparan sulfate¹
- Incidence in US is not known. "In reality, newborn screening will determine the incidence of MPS II in the US."
 - Estimate 0.13 to 2.16 per 100,000^{2,3}
 - Illinois pilot⁴: 1 in 113,000, Missouri pilot⁵: 1 in 73,000
- Females with MPS II are rare, but typically severe phenotype
 - Carriers are generally asymptomatic^{1,2}
- More than 400 disease causing variants in *IDS* locus (Xq28) described in ClinVar
 - Variable genotype-phenotype correlation

- 1. Validation of the laboratory test
- 2. Widely available confirmatory testing with a sensitive and specific diagnostic test
- 3. A prospective population-based pilot study

Key Questions

- Is the nominated condition(s) *medically serious*?
- Is the case definition and the spectrum of the condition(s) well described, to help predict the phenotypic range of those children who will be identified based on population-based screening.
- Are prospective pilot data from population-based assessments available for this disorder?
- Does the screening test(s) have established analytic validity?
- Are the *characteristics of the screening test(s)* reasonable for the newborn screening system (among other aspects, a low rate of false negatives)?
- Is there a widely available and CLIA and/or FDA approved confirmatory test/diagnostic process?
- Do the results have *clinical utility*? If the spectrum of disease is broad, will the screening and/or diagnostic test identify who is most likely to benefit from treatment, especially if treatment is onerous or risky?
- Are there defined *treatment* protocols, FDA approved drugs (if applicable) and is the treatment(s) available?

Is the nominated condition(s) *medically serious*?

- Despite range of phenotypes, MPS II is a progressive multi-organ disorder.
 - All forms have somatic implications including skeleton, joints, heart, upper and lower airways, hearing, eyes
 - Severe form impacts central nervous system
- Left untreated, patients with the severe form survive until only the second decade of life. Patients with the attenuated form may survive until the fifth or sixth decade of life⁶.

Is the *case definition* and the spectrum of the condition(s) well described, to help predict the phenotypic range of those children who will be identified based on population-based screening.

Unclear

- Prior to onset of symptoms, it is not always possible to predict the severity of the phenotype or cognitive involvement
- Many patients have rare or private mutations in the *IDS* gene for which no pre-existent phenotypic information is available^{7,8}
- A complete gene deletion or large rearrangement results in severe phenotype^{1,6}
- Routine diagnostic assays that measure the activity of I2S cannot distinguish between severe and attenuated MPS II patients.

Are prospective pilot data (U.S. and/or international) from population-based assessments available for this disorder?

- Pilot study 1: Illinois, mandated full-population screening began December 11, 2017
 - 339,269 infants screened as of February 2020⁴
 - 3 positive diagnoses confirmed by urine GAGs and molecular analysis
 - 28 false positives (includes pseudo-deficiency)
- Pilot study 2: Missouri, mandated full-population screening began November 1, 2018
 - 146,954 infants were screened as of June 30, 2020^5
 - 2 positive diagnosis confirmed by urine GAGs and molecular analysis
 - 27 false positives (includes pseudo-deficiency)

Does the screening test(s) have established *analytic validity*?

- Tandem Mass Spectrometry (MS/MS: FIA or LC) and Digital Microfluidics (DMF)
 - Neither FDA-cleared
- MS/MS and DMF
 - Sufficient data provided
 - Limit of detection
 - Recovery
 - Linearity
 - Accuracy
 - Precision
 - Interferences
 - Reference ranges
- Data provided demonstrate both methods have acceptable analytic validity

Are the *characteristics of the screening test(s)* reasonable for the newborn screening system (among other aspects, a low rate of false negatives)?

- Laboratory developed test
- Can multiplex with other analytes for LSD screening
- False positive rate similar to other first-tier assays for current RUSP conditions
 - Illinois (MS/MS): 339,269 screened, 31 screen positive, 3 confirmed
 - Missouri (DMF): 146,954 screened, 29 screen positive, 2 confirmed
 - Second-tier/Third-tier tests ideal
 - Sequencing IDS
 - DBS heparan sulfate and dermatan sulfate (insufficient data currently)
- False negative rate unknown (none identified in pilot studies)
- Other disorder detected: multiple sulfatase deficiency

Is there a widely available and CLIA and/or FDA approved *confirmatory test/diagnostic* process?

- No FDA cleared tests for MPS II
- Quantitative demonstration of deficient I2S activity in combination with a quantified elevation of urinary dermatan and heparan sulfates
 - second sulfatase is quantitatively assayed in plasma or white blood cells to rule out multiple sulfatase deficiency
- Sequencing of the IDS gene
 - Not diagnostic, helpful to predict phenotype
- Selected CLIA laboratories performing confirmatory tests
 - Mayo Clinic-Rochester
 - Greenwood Genetic Center
 - PerkinElmer Genetics
 - University of Illinois at Chicago Biochemical Genetics Laboratory
 - Duke University Biochemical Genetics Laboratory

Are there defined *treatment* protocols, FDA approved drugs (if applicable) and is the treatment(s) available?

- Two available therapies
 - Enzyme replacement therapy (ERT) with IV recombinant human I2S
 - Hematopoietic Stem Cell Transplantation (HSCT)
- ERT
 - Standard of care
 - Weekly IV infusions with idursulfase (FDA approved in 2006)
 - Does not cross blood-brain barrier and does not alter CNS disease
- HSCT
 - Infrequently used
 - Limited data on somatic and CNS improvement

Do the results have *clinical utility*? If the spectrum of disease is broad, will the screening and/or diagnostic test identify who is most likely to benefit from treatment, especially if treatment is onerous or risky?

Unclear

- Considerable clinical heterogeneity in the onset and rate of disease progression, but early intervention is important
- Screening does not clearly predict phenotype
 - Most serious phenotypes may be identified by sequencing
- Treatment can prevent somatic disease progression, but not reverse disease
- Impact of treatment on CNS remains unclear

Key Questions - Summary

- Is the nominated condition(s) medically serious? YES
- Is the case definition and the spectrum of the condition(s) well described, to help predict the phenotypic range of those children who will be identified based on population-based screening? UNCLEAR
- Are *prospective pilot data* from population-based assessments available for this disorder? YES
- Does the screening test(s) have established analytic validity? YES
- Are the *characteristics of the screening test(s)* reasonable for the newborn screening system (among other aspects, a low rate of false negatives)? YES
- Is there a widely available and CLIA and/or FDA approved confirmatory test/diagnostic process? YES
- Do the results have *clinical utility*? If the spectrum of disease is broad, will the screening and/or diagnostic test identify who is most likely to benefit from treatment, especially if treatment is onerous or risky? UNCLEAR
- Are there defined *treatment* protocols, FDA approved drugs (if applicable) and is the treatment(s) available? YES

The Advisory Committee should move the nomination of Mucopolysaccharidosis II (Hunter Syndrome, MPS II) forward for a full evidence review.

References

- 1. Burton BK, Giugliani R. Diagnosing Hunter syndrome in pediatric practice: practical considerations and common pitfalls. Eur J Pediatr. 2012;171(4):631-639. doi:10.1007/s00431-012-1703-y
- Martin R, Beck M, Eng C, et al. Recognition and Diagnosis of Mucopolysaccharidosis II (Hunter Syndrome). Pediatrics. 2008;121(2):e377. doi:10.1542/peds.2007-1350
- 3. Federhen A, Pasqualim G, de Freitas TF, et al. Estimated birth prevalence of mucopolysaccharidoses in Brazil. Am J Med Genet A. 2020;182(3):469-483. doi:10.1002/ajmg.a.61456
- 4. Burton BK, Hickey R, Hitchins L. Newborn Screening for Mucopolysaccharidosis Type II in Illinois: An Update. Int. J. Neonatal Screen. 2020;6(3):73. doi.org/10.3390/ijns6030073
- Bilyeu H, Washburn J, Vermette L, Klug T. Validation and Implementation of a Highly Sensitive and Efficient Newborn Screening Assay for Mucopolysaccharidosis Type II. Int J Neonatal Screen. 2020;6:79. doi: 10.3390/ijns6040079.
- 6. Wraith JE, Scarpa M, Beck M, et al. Mucopolysaccharidosis type II (Hunter syndrome): a clinical review and recommendations for treatment in the era of enzyme replacement therapy. Eur J Pediatr. 2008;167(3):267-277. doi:10.1007/s00431-007-0635-4
- 7. Froissart R, Da Silva IM, Maire I. Mucopolysaccharidosis type II: an update on mutation spectrum. Acta Paediatr. 2007;96(455):71-77. doi: 10.1111/j.1651-2227.2007.00213.x
- 8. Pollard LM, Jones JR, Wood TC. Molecular characterization of 355 mucopolysaccharidosis patients reveals 104 novel mutations. J Inherit Metab Dis. 2013;36(2):179-187. doi: 10.1007/s10545-012-9533-7